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• STREAM  framework  facilitates
enhanced  DNA  data  generation.

• Community-based  DNA  biomonitor-
ing can address  data  deficiencies.

• Environmental  stewardship and
Indigenous partnership are  valuable
for biomonitoring.
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a b  s t  r a  c t

There  is  an urgent  need for  rapid, standardised,  accurate  and accessible  monitoring  techniques  to better
detect and quantify change  given the increasing  threat of degradation and  biodiversity  loss  in  freshwa-
ter ecosystems.  Community-based  monitoring  projects  have  been  proven successful  for  the collection  of
meaningful biological data  from a  range  of target  species  and  ecosystems.  The  STREAM  (Sequencing the
Rivers for  Environmental  Assessment and  Monitoring)  project  combines community-based  monitoring
with a DNA metabarcoding approach to assess aquatic  ecosystem health by  determining  biodiversity  of
benthic macroinvertebrate  species  across Canadian  watersheds. STREAM  consists of outreach and  recruit-
ment, training  and dissemination  of results obtained  from  sequence  data, allowing  rapid generation  of
watershed biodiversity  reports  (e.g.  in 2  months).  We emphasise  the  benefits of  partnering with  commu-
nity  groups  in these  DNA  biomonitoring  efforts,  highlighting  the  value  of environmental  stewardship  and
eliminating  bottlenecks  for  scientific  data  collection.  We believe  the  approach taken in STREAM  is  not
only  applicable  to  Canada, but  functions as  an ideal model  for  freshwater  monitoring  on a global  scale.
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Introduction

Climate change and additional anthropogenic stressors, includ-
ing habitat loss and pollution, are currently driving regional and
global shifts and deterioration in species distribution, composi-
tion and abundance (Butchart et al., 2010; Brown et al., 2016;
Jackson et al., 2016; Warren et al., 2018). The ability to  detect and
understand these global changes is of vital importance for pre-
venting further biodiversity loss (Butchart et al., 2010; Anderson,
2018; Kissling et al., 2018). In a  rapidly changing world, faster and
more diagnostic biomonitoring techniques are  urgently required
for accurate assessment of modifications of ecological state (i.e. bio-
diversity loss), in global ecosystems (Butchart et al., 2010; Jackson
et al., 2016).

Freshwater ecosystems provide vital ecosystem services to
humans and are critical for the wellbeing of many species
(Mittermeier et al., 2010; Darwall et al., 2018). With human popula-
tions expected to grow to 9 billion by  2050 (Gleick and Palaniappan,
2010), pressures on freshwater ecosystems are intensifying. Fresh-
water scarcity and security are  only two of many major issues
behind the global freshwater biodiversity crisis (Vörösmarty et al.,
2000; Jury and Vaux, 2005; Srinivasan et al., 2012; Darwall et al.,
2018), and in  the Anthropocene, demand for freshwater will
only increase, thus accelerating degradation and overall negative
impacts on freshwater (Waters et al., 2016; Darwall et al., 2018)
unless ecosystems are managed wisely.

Monitoring freshwater ecosystems in the face of local anthro-
pogenic effects and global climate change has proved to  be
challenging (Geist, 2015; Hermoso et al., 2016; Jackson et al., 2016).
Despite only covering 1% of the Earth’s surface area (Mittermeier
et al., 2010),  freshwater habitats are widespread (Moss, 1994), often
inaccessible either physically or  due to political barriers (Salwasser,
1990; Conrad and Hilchey, 2011). Overcoming these obstacles is
crucial to enable representative assessment of freshwater health at
appropriate spatial scales (Jackson et al., 2016). Public participation
in biological data collection can play a  crucial role in address-
ing physical and social barriers to ecological data collection and
consequently, community water-based monitoring (CWBM) has
grown significantly in  the last decade (Conrad and Hilchey, 2011;
Gura, 2013; Pocock et al., 2015; Weston and Conrad, 2015). This
activity, widely termed as a ‘citizen science’ or ‘community-based
monitoring’, has been used globally as an observation and data
collection approach for both long-term and focussed short-term
projects and is increasingly recognised as a  vital component of
environmental protection and management (Greenwood, 2007;
Dickinson et al., 2012; Biggs et al., 2015; Environmental Protection
Belongs to the Public: A Vision for Citizen Science at EPA, 2017;
Heigl et al., 2019). In  Australia, the Tasmanian State Government
has conducted broadscale monitoring of river condition, using the
Australian River Assessment System (AusRivAS) protocols, which
focuses on macroinvertebrate communities and habitat quality
(Smith et al., 1999). In Canada, the large-scale Canadian Aquatic
Biomonitoring Network (CABIN), was implemented to  provide a
consistent approach to biological assessment and to support the
aquatic biomonitoring needs of a  diverse array of network part-
ners. CABIN has been working with community groups for the last
20 years to collect and analyse data on freshwater health, by provid-
ing standardized sampling protocols, training, shared database and
mapping tool, and common data interpretation methods based on a
Reference Condition Approach (RCA) for assessing aquatic ecosys-
tem condition (Environment and Climate Change Canada, 2012;
Jones et al., 2011).

Quite often with community-based biomonitoring research,
community groups with an interest in the biological ques-
tions being asked are approached as potential collaborators for
environmental monitoring, including direct sample and/or data

collection (Dickinson et al., 2012). This approach can facilitate
wider involvement in regional or national monitoring activities,
while increasing the volume of data collected (Dickinson et al.,
2012). The involvement of community residents in generating bio-
logical information goes beyond research (Phillips et al., 2019);  by
forming such collaborations, community groups are  empowered
as volunteer field technicians and enhance their scientific literacy
(Bela et al., 2016). Community-based projects result in improved
science–society–policy interactions and drive a  more bottom-up
democratic approach to knowledge-generation based on evidence
and informed decision making (Bela et al., 2016; Hsu et al., 2017;
Hecker et al., 2018). Successful community-based projects are
often executed within a  framework which includes training of  vol-
unteers, optimised data processing methodology and accessible
dissemination of project results (Bonney et al., 2009; Silvertown,
2009; Conrad and Hilchey, 2011; Dickinson et al., 2012; Newman
et al., 2012). Frameworks involving these three elements are crucial
for consistency and reproducibility of nationally focused projects
for trans-national or global scales of biological monitoring.

Supporting program operation through standardised protocols
for environmental sample collection linked to training support
is  a key element in the development of DNA-based community-
based monitoring projects (Biggs et al., 2015; Deiner et al., 2017;
Environment and Climate Change Canada, 2018). Design and opti-
misation of commercial sampling kits and bioinformatic pipelines
have facilitated the involvement of community groups in biodi-
versity research, reduced monitoring costs and sped up the data
generation process (Biggs et al., 2015; Deiner et al., 2017; Leese
et al., 2018; Compson et al., 2020). Such automated DNA-based
approaches for biomonitoring empowers communities and draws
attention to the issue of biodiversity declines from local to nation-
wide scales.

STREAM (Sequencing the Rivers for Environmental Assessment
and Monitoring), is  a  biomonitoring project which involves the
combination of community-based monitoring and DNA metabar-
coding technologies to  assess aquatic ecosystem health using
benthic macroinvertebrate communities in  watersheds across
Canada (www.stream-DNA.com). DNA metabarcoding comprises
the mass-amplification of DNA from a range of target taxa (i.e.
macroinvertebrates) from an environmental sample (i.e. benthos).
Built on over a  decade of research and development in apply-
ing DNA metabarcoding, coined Biomonitoring 2.0, for rivers and
wetlands benthic analysis (e.g. (Hajibabaei et al., 2011; Baird and
Hajibabaei, 2012), STREAM is a national multi-stakeholder collabo-
ration between the Centre for Biodiversity Genomics at University
of Guelph, World Wildlife Fund (WWF)  Canada, Living Lakes Canada
(LLC), and Environment and Climate Change Canada (ECCC). This
unique merging of academic and non-academic partners facili-
tates community and bioinformatic processing, with a  government
platform, CABIN for networking and outreach (Fig.  1).  STREAM
was established with the main premise of collecting 1500 sam-
ples across 15 watersheds over a  3-year period. Watersheds to
be targeted include some which are  currently being monitored
through the CABIN network, together with other data-deficient
watersheds. STREAM, via Living Lakes Canada, aims to  train 40
new community-based monitoring volunteers, of which this num-
ber has already been exceeded, with 100 new trained volunteers
recorded in February 2020. In terms of data processing and report-
ing. The overarching research question aims to address whether
we can better understand freshwater ecosystem health across
Canada, through applying diversity, functional and richness metrics
of macroinvertebrate DNA samples collected in conjunction with
community-based biomonitoring groups. STREAM aims to fast-
track identification and classification of macroinvertebrates from
up to 6-12 months (referring to  sample collection, identification,
quality assurance/quality control and report generation; (Gardner
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Fig. 1. Graphical representation of the STREAM workflow for community-based DNA biomonitoring of benthic invertebrates.

et al., 2008; CABIN, 2014; Hajibabaei et al., 2016)) to 1-2 months.
The aim of this is to increase the taxonomic and spatial coverage of
sampling locations, creating the potential for more comprehensive
interpretation and diagnosis of environmental condition.

Here we discuss the framework of the STREAM project and
explore how we can apply this community-based project approach
beyond Canada for global freshwater monitoring.

Partnerships with community groups

Understanding motivations of communities to participate in
community-based monitoring projects is important for ensuring
initial uptake and data collection throughout the duration of the
project (Jordan et al., 2012). It  is  expected that benefits for the
communities (Jordan et al., 2012) and project incentives (Dickinson
et al., 2012)  are fundamental drivers of public engagement (Rotman
et al., 2014). Duration of project and frequency of data collection
required can also be determining factors for uptake and sustainabil-
ity of engagement (Silvertown, 2009; Rotman et al., 2014). Often,
the greatest influence for involvement with biological monitoring
projects is the research question being addressed with the data col-
lection (Bonney et al., 2009; Dickinson et al., 2012; Tweddle et al.,
2012; Rotman et al., 2014). Data collection volume often forms
the first ‘bottleneck’, regarding the impact of the research findings
(Silvertown, 2009). Therefore, it is imperative to form partnerships
with community groups that have a  vested interest in the impli-
cations of the research and have the capabilities to  collect data
long-term.

Project interest is a  fundamental component to building a  suc-
cessful community-based programme. STREAM acknowledges this
and therefore aims to  partner with groups of individuals which
either have prior experience or training with freshwater monitor-
ing and/or have a vested interest in addressing their own  ecological
questions within the scope of STREAM. In Canada, collaborating
with First Nations, Inuit and Métis (referred to as FNIM hereafter)
as stakeholder groups for study design and sample collection is
important on two levels; firstly, this helps to build community
technical capacity and secondly, this facilitates the co-creation

of data and provides the opportunity to  learn from Indigenous
Knowledge (Pocock et al., 2019). This approach ultimately facili-
tates two-eyed seeing (Bartlett et al., 2012),  which is  essential in the
context of environmental protection and management (Absolon,
2011). Working in conjunction with NGOs such as WWF-Canada
and Living Lakes Canada, STREAM facilitates the networking of
FNIM groups with researchers to achieve a common goal of a
better understanding of freshwater biodiversity. As  described by
Nerbonne and Nelson (2008), being part of a  network of engaged
biomonitoring communities encourages data use, and STREAM
partnerships with Environment & Climate Change Canada’s CABIN
network and Living Lakes Canada, can facilitate receptor uptake and
data application within engaged communities.

STREAM considers community groups involved in this project as
partners, who have a vested interest in  identifying their local bio-
diversity for the purpose of preserving/sustaining it as a valuable
local resource. As well as the benefits of data collection for assessing
freshwater health, there are numerous benefits to  the communities
themselves, including: hard data, assistance with data interpreta-
tion, and the ability to leverage this information to advocate for
protections/management interventions to sustain their local fresh-
water resources. It  is  important to highlight that STREAM gives
back to local communities, in the form of empowering local com-
munities, facilitating the learning of new skills and providing an
open channel of communication between community groups and
researchers.

Education, training and sample collection

An essential component of this biomonitoring approach is a
robust training element, which covers all aspects of sample col-
lection that is realistic and achievable by non-specialists and
communities alike (Gardiner et al., 2012; Tulloch et al., 2013;
Bonney et al., 2014). Sample protocol complexity is known to be
a key determining factor as to  whether community-based biomon-
itoring projects are successful (Bonney et al., 2009; Parsons et al.,
2011; Crall et al., 2013). Often, the higher the effort input required
for biological sampling, the greater the likelihood that communi-
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ties will cease engagement with biomonitoring projects (Bonney
et al., 2009; Parsons et al., 2011). However, the use of visual aid
such as training videos and online materials can aid the training
process (Newman et al., 2012), even for multi-step protocols such
as in Biomonitoring 2.0.

STREAM employs the existing CABIN framework, developed
and led by Environment and Climate Change Canada, to  train
community groups in the Biomonitoring 2.0 approach. Environ-
ment da and Living Lakes Canada undertake extensive outreach
activities to promote training events, via websites, newsletters
and through directly communicating with community groups and
stakeholders. The existing CABIN network functions effectively as
a method of information communication and wider dissemination.
Elements of CABIN online training include foundation modules,
such as ‘Introduction to Biomonitoring’, which includes resources
on bioindicators and aquatic ecology, modules on site selection and
sample collection and focused module components on analytical
methods and how reports are used in  site assessment. The practi-
cal elements of this training are delivered by Living Lakes Canada
staff and covers all aspects of sample collection, decontamination
and shipping, with end users receiving a  certification on completion
of field training and passing of module quizzes.

CABIN training and sample collection protocols have been
implemented within community groups with great success for
over 20 years (Buss et al., 2014; Strachan and Reynoldson, 2014;
Gibson et al., 2015), and only a  slight modification to  sample pro-
cessing post-collection is required for DNA metabarcoding. For
STREAM, river/stream samples are collected via the standardized
CABIN Wadeable Streams Field Protocol (Environment and Climate
Change Canada, 2012) and wetland samples through the CABIN
Wetland Macroinvertebrate protocol (Environment and Climate
Change Canada, 2018). The addition of ethanol or antifreeze preser-
vative after sample collection is  the only element which differs from
the original protocol. This approach of working in  conjunction with
non-academic organisations and following a  standardised train-
ing programme, efficiently utilises expertise of training programme
coordinators and facilitates high-quality, reliable and comparable
data collection.

Facilitating remote and multi-taxa sampling

To achieve the desired broad spatial coverage of STREAM sam-
ples and to facilitate the generation of biomonitoring from multiple
taxa of interest, we have previously developed and optimised cer-
tain elements of sample collection and storage. Across Canada,
many of the data-deficient watersheds for freshwater health are
located within remote regions (WWF-Canada, 2017). High purity
(e.g. molecular biology grade) ethanol is  commonly used to pre-
serve benthos samples, however as this chemical is classified as
hazardous, challenges arise regarding storage and transit of ben-
thos samples preserved in ethanol (Williams, 2007; Steininger
et al., 2015). To resolve this issue, we tested propylene glycol-
based antifreeze as an alternative to ethanol for preserving benthic
arthropod DNA and determined that antifreeze suitably preserves
benthic samples for the downstream analysis of macroinverte-
brate DNA (Robinson et al., 2020).  The application of antifreeze
as a preservative in  conjunction with training and engaging local
communities in remote regions, will enable us to  collect samples
from areas either only accessible by air  or areas where alcohol
is prohibited/not available, thus increasing the spatial extent of
sample collection (Robinson et al., 2020). For a  holistic assess-
ment of freshwater health, it is  often necessary to collect data
on  additional extant taxonomic groups to macroinvertebrates,
such as microscopic protist group diatoms (Blanco and Bécares,
2010). The main problem with sampling diatom taxa is the time-
consuming and labour-intensive periphyton sampling protocol,

which is  impracticable for community groups to  undertake (Aloi,
1990; King et al., 2006). In order to combine diatom sampling
with standard CABIN macroinvertebrate sampling, we tested the
taxonomic detection of diatoms from CABIN kick-net sample
methodology compared to conventional periphyton microhabitat
scraping (Maitland et al., 2020). Through this optimisation, we
determined that highly similar diatom assemblages can be detected
using solely benthic kick-net sampling, which opens up  an impor-
tant opportunity to simultaneously collect benthos samples for
both macroinvertebrate and diatom DNA (Maitland et al., 2020).
These two exemplar studies showcases potential for facilitating
both remote and multi-taxa sampling for STREAM, highlights the
cutting-edge and innovative aspect of the project.

Data processing and reporting

High-quality data from community-based biomonitoring is
possible when standardized field-collection and DNA-based pro-
tocols are coupled with high throughput sequencing processed
with standardized bioinformatic pipelines (Biggs et al., 2015;
Sutherland et al., 2015). STREAM uses high-performing, opti-
mised DNA extraction and sequencing methodologies to generate
maximum species coverage for macroinvertebrate community
assessment (Hajibabaei et al., 2019). For assessing how effective
community-based DNA biomonitoring can be as a model for fresh-
water monitoring, it is  vital to have laboratory protocols optimised
fully, with established pipelines and workflow, so that data is
processed efficiently and in a timely manner. Existing morphology-
based biomonitoring protocols depend on manual morphological
taxonomic identifications, which can take longer to  generate results
and these results are often not presented in an accessible format
for non-specialists (i.e. with common names; Fore et al., 2001;
Dickinson et al., 2010; Crall et al., 2013). Through applying Biomon-
itoring 2.0, STREAM will significantly reduce the processing time of
samples from up to 12 months or more to less than two  months.
Generating results within a  short time frame is vital for encouraging
continued participation from community groups and stakeholders
(Baird and Hajibabaei, 2012; Jackson et al., 2016; Keck et al., 2017;
Leese et al., 2018).

Using standardized bioinformatic pipelines to process large
amounts of sequence data (e.g. (Porter and Hajibabaei, 2018), is
essential for scalable, reproducible results that can be directly
compared across samples and sites. Pipelines, such as MetaWorks
(Porter and Hajibabaei, 2020a), enables data to be analysed in  bulk
(i.e. 96 samples per sequencing run) and later split into custom
DNA reports for community groups and stakeholders. STREAM data
reports consist of broad introductory information on biomonitor-
ing and the goals of the project, a  succinct methods section and
data outputs, including species richness plots and taxa lists which
highlight present bioindicator groups. These reports are fully cus-
tomisable, enabling community groups and stakeholders to include
their own study objectives and request additional analyses to meet
their objectives. All  data, in  the form of quality-filtered taxa lists
(99% correct classification at family, genus and species level; (Porter
and Hajibabaei, 2020a)) with common names in  addition to Latin,
are sent directly back to community groups and stakeholders along
with a  custom report. Data, in  the form of DNA sequences, is also
required to  be submitted to  open access sequence read archives
(SRA), such as on the National Centre for Biotechnology Information
SRA (NCBI; https://www.ncbi.nlm.nih.gov/sra), to  meet funding
agency requirements. To encourage multi-year sampling and to
help address long-term biomonitoring objectives, sequences from
previous years are re-processed through newer pipeline versions
when groups collect samples from the same site(s) over multiple
years. This facilitates multi-year comparisons at no additional cost.
In addition to physical reports, there is also the option for dissem-
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ination of data via virtual meetings, where key information and
implications of data generated are fed back to groups.

STREAM data implementation

Data presented in STREAM reports has been implemented
within both community-led and stakeholder environmental
programs. For example, independent environmental consulting
service, Integrated Ecological Research (IER), partnered with
STREAM and a local environmental stewardship group (Slo-
can River Streamkeepers) to collect and generate multi-year
DNA-based monitoring data. This data is being used to assess
macroinvertebrate richness and diversity metrics prior to and
post-restoration of Slocan River wetlands in  British Columbia. In
addition, other stakeholders including Parks Canada, Nature Con-
servancy Canada, 4 Rivers Environmental Services and Fisheries
and Oceans Canada (DFO) are currently partnered with STREAM
to address biomonitoring objectives across a  wide range of water-
sheds in Canada.

Implementing as nationwide, community-based biomonitor-
ing project such as STREAM, requires effective cross-collaborative
partnership. It is important to combine specialities of partners
who engage and train community groups, partners who manage
databases and provide standardised protocols and lead the project
through an organization that will process and handle the com-
munity data, to foster communication and meet community (and
data) needs. Engaging governmental bodies, such as Environment
and Climate Change Canada, within community-based biomonitor-
ing projects is pivotal for routine adoption of DNA-based methods,
especially referring to  in-kind support and funding (Nerbonne and
Nelson, 2004), which is required to address long-term questions
concerning freshwater health. Fundamentally, effective commu-
nication to community groups and stakeholders is  an essential
component to success of projects such as STREAM. Communica-
tion in the form of resources, contact information, data processing
updates and opportunity to provide participation feedback have all
proved to be indispensable for creating strong, authentic relation-
ships with community groups.

Conclusions

The combination of DNA metabarcoding and community-based
monitoring is a paradigm shift in  our ability to obtain biodiversity
information at  any time and any place. The information captured
could inform existing biomonitoring programmes such as CABIN
mainly through taxon-based biodiversity information (e.g. richness
and distribution of species or genera of interest). However, molecu-
lar analysis provides additional data possibilities that could become
highly valuable for next generation of ecological and environmen-
tal analysis. By using sequence-based biodiversity measures (e.g.
Exact Sequence Variants) one can dramatically increase the infor-
mation content of samples obtained (Porter and Hajibabaei, 2020b)
and inform ecological and environmental models. Furthermore, by
using additional DNA markers and more comprehensive sequenc-
ing analysis (Singer et al., 2019)  it is now possible to  monitor
biodiversity and trophic relationships of all living organisms in  an
ecosystem from microbes to mammals.

The uniqueness of STREAM lies in its alliance between aca-
demic, non-governmental, government and community groups to
carry out freshwater biomonitoring to  answer fundamental ques-
tions regarding the health of Canada’s rivers. This alliance takes
advantage of the cutting-edge science as well as people’s power
in participating in  scaling up the application of science within an
established regulatory framework for biomonitoring. STREAM sets
the stage for how community-based monitoring projects could be

applied to global freshwater systems for rapid assessments of  bio-
diversity assemblages to inform ecological analysis. A systematic
training design, such as the one used in STREAM, is  simple yet
effective and can easily be applied to  other freshwater systems
around the world, if endorsed by NGOs and/or local conservation
bodies. The combination of partnering with interested community
groups, standardised training and sampling protocols, rapid next-
generation sequencing technologies and accessible data packages,
emphasises the strength of the STREAM project and the capability
of this model to be easily applied outside of Canada.
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