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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• OECMs have recently been implemented 
in several countries, such as Colombia.

• 15% of Colombia’s snakes geographical 
range are represented within PAs.

• OECMs increase the representativeness 
of snakes and contribute to achieving 
conservation goals.

• Most priority areas were concentrated in 
regions with potential OECMs.

• OECMs complement the PAs, contrib-
uting to the conservation of 
biodiversity.
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A B S T R A C T

Other effective area-based conservation measures (OECMs) have recently been implemented in countries such as 
Colombia and, together with protected areas (PA), are crucial biodiversity conservation strategies. Assessing the 
contribution of different area-based conservation frameworks (i.e., PA and OECMs) involves evaluating the 
representation degree of species’ geographic ranges, representation targets achievement (i.e., Gap analysis), 
priority areas for conservation, and their relationship with the remaining habitat. Snakes regulate prey pop-
ulations, interfere with the behavior and diet of other species, can be bioindicators, and facilitate the transfer of 
energy and biomass between environments, making them a conservation priority. Currently, Colombia hosts >
300 snake species from nine families. Here, we explored the snake diversity pattern in Colombia and its rela-
tionship with remaining habitat. We also evaluated the degree of representation within PA and OECMs of species 
geographic distributions, species richness, and priority areas for conservation. Areas with the highest snake 
richness are in the Andean, Pacific, and Amazon regions; however, these are predominantly outside PA and 
OECMs. Representativeness of species ranges and representation targets within PA increased with the OECMs. 
The Caribbean and Andean regions have areas with the lowest remaining habitat. Our findings highlight that the 
OECMs contribute to the conservation of snakes in Colombia and complement PA. The Pacific, Orinoco, Amazon, 
and the northern Caribbean presented the highest concentration of priority areas for conservation and given the 
presence of indigenous people groups and large remaining habitat, these regions are most promising for creating 
new OECMs.
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Introduction

Globally, biodiversity has been affected by the increasing expansion 
of anthropized areas; for example, between 1960 and 2019, 32% of the 
global area showed changes in land use, mainly due to the expansion of 
agricultural land (Winkler et al., 2021). In South America, human ac-
tivities affected 40% of land cover in 2018 (Zalles et al., 2021). Specif-
ically, in Colombia, livestock, agriculture, mining, oil extraction, and 
illicit crop development are the major causes of natural cover loss 
(Andrade and Castro, 2012; Palacio et al., 2001). Paradoxically, natural 
cover loss worsened after the 2016 peace agreement, particularly in 
areas previously occupied by FARC-EP guerrillas (Fuerzas Armadas 
Revolucionarias de Colombia Ejército del Pueblo), which have been mainly 
used for illicit crops development (Pirela-Ríos et al., 2023). Under-
standing the processes that drive biodiversity loss could help manage 
areas destined for production and biodiversity conservation (Margules 
and Pressey, 2000).

Area-based conservation frameworks (e.g., protected areas –PA– and 
other effective area-based conservation measures –OECMs–) are a 
globally applied approaches that define geographic areas for in situ 
conservation of biodiversity (Salafsky et al., 2024). PA are geographic 
areas dedicated to the long-term conservation of biodiversity, ecosystem 
services, and cultural values (CBD, 2018). PA contribute to the sus-
tainment of ecosystem services (Figgis et al., 2015), are a source of re-
sources for human communities (Velazco et al., 2022a), and enable the 
survival of biodiversity in the face of global changes (Lehikoinen et al., 
2021; Thomas et al., 2012). Thus, PA has become one of the main tools 
to address biodiversity loss (Margules and Pressey, 2000; UNEP-WCMC, 
IUCN, 2021).

Alongside PA, OECMs have been implemented internationally. 
OECMs are areas not designated as PA but managed in such a way that 
they conserve biodiversity; ecosystem functions and services; and cul-
tural, spiritual, and socioeconomic values (CBD, 2018). A fundamental 
distinction between PA and OECMs is that PA are primarily designed to 
conserve biodiversity, whereas OECMs can be managed for a range of 
objectives, and conservation may or may not be the primary objective 
(IUCN-WCPA Task Force on OECMs, 2019). OECMs were proposed in 
the Strategic Plan for Biodiversity 2011–2020 and included in the Aichi 
Targets (CBD, 2010), and the Convention on Biological Diversity (CBD) 
ratified that target 3 can be achieved through PA and OECMs (CBD, 
2022). Recently, it has been found that OECMs provide additional 
coverage and connectivity in different ecoregions, key biodiversity 
areas, and countries, which could significantly contribute to the 
achievement of conservation targets (Jonas et al., 2024).

Colombia’s National System of Protected Areas (SINAP) divides PA 
into public areas (e.g., national parks or protective forest reserves) and 
private areas (e.g., civil society reserve areas; Munévar and Ramírez, 
2021). After COP 14, Colombia adopted the OECMs, allowing the 
development of a methodological route for identifying and reporting 
OECMs to the World Conservation Monitoring Center. Thus, Colombia 
has become an international reference and the first country in Latin 
America and the Caribbean to identify, nominate, and report the OECMs 
(Santamaría, et al., 2021). Therefore, the protected continental area in 
Colombia represents 31%, reaching CBD target 3 (30 × 30), which states 
that by 2030, at least 30% of the terrestrial, inland water, marine, and 
coastal areas should be protected (Dinerstein et al., 2019). Despite this 
progress, there has been evidence of a reduction in natural cover within 
PA and their surrounding regions due to deforestation, fires, and 
land-use changes in Colombia (Murillo-Sandoval et al., 2018).

Globally, PA networks exhibit biases in effectively representing 
biodiversity and connectivity between them (Saura et al., 2017; Sayre 
et al., 2020). This is because PA have often been established in isolated, 
sparsely populated places or are unsuitable for cultivation (Baldi et al., 
2017). PA efficiency can be evaluated through the representativity of 

species ranges (or other biodiversity attributes) within PA using spatial 
conservation prioritization or Gap analysis (Kukkala and Moilanen, 
2013; Rodrigues et al., 2004). Several studies have shown that PA biases 
reduce their efficiency (e.g., Gomes et al., 2024; Lourenço-de-Moraes 
et al., 2019; Oliveira-Dalland et al., 2022). However, OECMs could 
suffer from the same biases, and because they are relatively new 
area-based conservation frameworks, research on their conservation 
contributions and how they complement PA are still scarce (Cook, 
2024).

Habitat loss and degradation are factors that decrease reptile pop-
ulations (Gibbons et al., 2000); nevertheless, studies on the loss of 
reptile diversity in response to land-use change remain rare (Andrade 
Correa, 2011). Globally, integrated studies on the conservation status of 
reptiles are scarce compared to other vertebrates, hindering effective 
conservation strategies (Cox et al., 2022). Snakes play different roles in 
terrestrial and aquatic ecosystems, and because of their position across 
various trophic levels, they affect the behavior and diet of other species 
(Adams et al., 2024; Willson and Winne, 2016). Because of the predatory 
behavior of snakes, they can regulate prey animal populations (e.g., 
rodents, insects, amphibians; Lynch, 2012; Title et al., 2024), control 
pest populations (Shine et al., 2024), and may even act as a secondary 
dispersal (Reiserer et al., 2018). In addition, they facilitate the transfer 
of energy and biomass between aquatic and terrestrial environments 
(Willson and Winne, 2016). A decrease in snake populations could lead 
to destabilization of ecosystem processes (Adams et al., 2024). Further 
snakes’ ecosystem roles, they can serve in ecological risk assessments 
(Campbell and Campbell, 2001; Weir et al., 2010), bioindicators 
(Ugochukwu et al., 2024), and their poison used to derive new drugs 
(Oliveira et al., 2022). Therefore, snakes are an important group for 
studying their diversity patterns, their relationships with land use, and 
quantifying the contribution of different area-based conservation 
frameworks (i.e., PA and OECMs) to their protection.

Habitat loss and death by farmers are the main factors affecting 
snake survival in Colombia and, to a lesser extent, road mortality and 
wildlife trafficking (Lynch, 2012). In Colombia, 9% of reptiles are under 
some degree of threat, and 20% are Data Deficient; particularly for 
snakes, ten species are under some threat category (Galvis et al., 2016). 
Colombia has nine families within the suborder Serpentes, of which 
Colubridae is the most diverse and abundant (Lynch et al., 2014). Snakes 
in this country are in most of the territory and distributed in an altitu-
dinal range from 0 to 2600 m a.s.l. (Lynch, 2012). In this study, we 
applied species distribution modeling and spatial prioritization tech-
niques to (i) assess the degree of snake representativeness within the PA 
and OECMs networks, (ii) determine the proportion of remaining snake 
habitat and (iii) evaluate the degree of representativeness within PA and 
OECMs of snake geographic distributions, species richness, and priority 
areas for conservation.

Methods

Study area

Colombia is crossed by the Andes mountain range, which branches 
into three mountain ranges, giving it a high orographic complexity 
(Rangel, 2010). The Baudó system, Sierra Nevada de Santa Marta, and 
Macarena also stand out, complemented by valleys and mountains that 
confer a variety of meso- and microclimates (IDEAM-UNAL, 2018). 
Seventy percent of Colombia has a mean temperature of 24 ◦C 
(IDEAM-UNAL, 2018). The rainiest areas (Pacific region, Amazonian 
foothills, and plains) can have rainfall >4000 m/year, whereas the driest 
regions (Guajira Peninsula, some regions of the inter-Andean valleys) 
have rainfall of 500 m/year (IDEAM-UNAL, 2018). Six natural regions 
are recognized in Colombia: the Andean, Pacific, Amazon, Orinoco, 
Caribbean, and Insular regions (Fig. S1; Rangel, 2010).
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PA and OECMs database

Protected areas in Colombia began in 1938, consolidated with the 
signing of the CBD in 1992, ratified in Law 165 of 1994 (Lenis, 2014), 
and in 1993 the SINAP - National System of Protected Areas was pro-
posed (Lenis, 2014). In 2019 in Colombia, OECMs were identified, 
strengthened, and reported at the international level (Santamaría et al., 
2021). By 2023, Colombia had 1652 PA and 48 OECMs, encompassing 
187,817 and 128,480 km2, respectively (SINAP, 2023; UNEP-WCMC, 
2024; Table S1). The Protected Planet database (https://www.protect 
edplanet.net) was used as source of the PA and OECMs.

Remaining habitat

We calculated a remaining habitat map to evaluate the extent to 
which each species range was affected by habitat loss in 2022 (Appendix 
S1 in SM). Values of remaining habitat map closer to 1 indicate land-
scapes with a higher proportion of habitat (Table S2). We graphically 
explored the relationship between potential snake species richness (i.e., 
based on stacked species distribution models of semi-binary models; see 
details below) and remaining habitat both in geographic space and at 
the cell level (Velazco et al., 2023).

Compilation, integration, and cleaning of snake records

We obtained a list of 334 snake species native to Colombia from the 
Reptile DataBase portal (Uetz et al., 2023). We then reviewed the 
literature and other data sources for Colombia (BioModelos, 2023; SIB 
Col, 2023) to eliminate species with insufficient information on their 
occurrence. Species records were compiled from various open-access 
databases (Table S3). To better represent the environmental re-
quirements of the species, models were constructed with records from 
throughout species’ natural range (i.e., inside and outside Colombia). 
Taxonomic errors, geographic inaccuracies, and biases in record data 
lead to decreased performance of species distribution models (SDMs) 
and alterations in diversity patterns (Baker et al., 2022; Maldonado 
et al., 2015). We used the R bdc package (Ribeiro et al., 2022) to inte-
grate record databases and perform spatial and temporal corrections 
(Appendix S2). Final database comprised 56,830 records and 309 spe-
cies. Furthermore, for those species with no occurrences, <3 occur-
rences, or low model performance (i.e., Sorensen values < 0.7), but with 
distribution polygons available in Roll et al. (2017), we randomly 
sampled 1000 presences throughout species polygon.

Environmental variables

SDMs were constructed using climatic and elevation environmental 
variables; however, some species were modeled using edaphic or hy-
drological variables, depending on their biological characteristics (i.e., 
aquatic, fossorial; Table S4). Thus, we initially chose 12 bioclimatic 
variables obtained from CHELSA v2.1 (Karger et al., 2017) and elevation 
(Jarvis et al., 2008), both with 1 km resolution. Edaphic variables were 
sourced from SoildGrid v.2.0 (Hengl et al., 2017) at 0−5 cm depth and 
250 m resolution. We used Compound topographic index as a hydro-
logical variable at 1 km resolution, as it serves as a proxy variable for 
watercourses (Table S4). The compound topographic index was ob-
tained from the geomorpho90m database (Amatulli et al., 2020). All 
variables were upscaled to 5 km resolution with a geographic extent 
from the northern United States to southern South America. Initially, 17 
variables were considered (Table S4). To reduce multicollinearity and 
the number of predictor variables, we constructed a Pearson correlation 
matrix (Fig. S2) using the values of the variables represented in all 
pixels. For all pairs of variables with a correlation ≥ |0.7|, we chose the 
variable with the highest biological significance. Finally, eight variables 
were selected (Table S4). Each species was fitted with a specific com-
bination of variables (climatic, edaphic, hydrological, and elevation, 

Table S5). Although the selected variables were not correlated, the 
correlation structure could change for different species training areas 
(see species distribution models) (De Marco and Nóbrega, 2018). To 
overcome potential multicollinearity problems and reduce the number 
of predictors, we performed principal component analysis specific to 
each species variable combination (i.e., Table S4) and training area. 
Principal component analyses were performed based on correlation 
matrixes and selected a number of principal components that explained 
up to 95% of original variance (De Marco and Nóbrega, 2018). The 
derived principal components were used as predictors in SDMs.

Species distribution models

We used SDMs to estimate species distribution and habitat suit-
ability. SDMs predict species habitat suitability and geographic distri-
bution by relating georeferenced observations (i.e., records) with 
environmental predictors (Soberón et al., 2017). The SDMs were created 
using eight algorithms (Appendix S3). We used several algorithms 
because no single algorithm can deal with all modeling conditions (e.g., 
species prevalence, niche breadth, or records number), and allows the 
use of consensus models (Qiao et al., 2015). We used flexsdm v1.3.6 R 
package to create SDMs, which allows the creation of flexible modeling 
protocols, and structuring functions in pre-modeling, modeling, and 
post-modeling steps (Velazco et al., 2022b).

Training areas of SDMs can affect environmental quality patterns and 
performance metrics (Barve et al., 2011). We delimited the training area 
of each species using a minimum convex polygon based on species oc-
currences plus a buffer of 500 km. We used a technique to filter records 
in environmental space to reduce the sampling bias of species with > 50 
records (Appendix S3). Because we did not have absence data, we 
randomly sampled pseudo-absences distant to 50 km from records 
within the training area (Appendix S3). For species with occurrences 
sampled from their distribution polygons, we sampled pseudo-absences 
outside the species polygons (Mancini et al., 2024).

It is advisable to establish different modeling protocols depending on 
the requirements of the species and the number of records, as these 
affect the distribution pattern of the species and spatial prioritization 
analyses for conservation (Pimenta et al., 2022). Therefore, we designed 
three modeling protocols established based on records number (Ap-
pendix S4; Tables S5, S6, and S7).

We used Sorensen, Area Under the Curve (AUC), and True Skill 
Statistic (TSS) as model performance metrics (Fig. S3). The threshold 
that maximizes Sorensen’s metric was used to binarize models. The final 
model consisted of a consensus model calculated based on the arithmetic 
mean of environmental suitability values. For this procedure, we used 
only algorithms with Sorensen values ≥ 0.7.

SDM projections over large areas can lead to overprediction of high 
suitability zones outside the species’ current range, impacting spatial 
prioritization and diversity metrics (Velazco et al., 2020). To address 
this, we applied a minimum convex polygon with a 100 km buffer 
around it (Mendes et al., 2020) and used the threshold maximizing the 
Sorensen metric for binary species distributions.

GAP analysis

Gap analysis assesses how well conservation areas meet representa-
tion targets for biological diversity (Rodrigues et al., 2004). Represen-
tation targets are based on species range size; species with ≤ 1000 km² 
require 100% of their range to be protected (i.e., within PA or OECMs), 
while those with ≥ 250,000 km² require 10%. Targets for species with 
ranges between 1000–250,000 km² were interpolated (Rodrigues et al., 
2004). Species were classified as (1) ’Not Protected’ if entirely unpro-
tected, (2) ’Gap’ if < 20% of the target is met, (3) ’Partial GAP’ if 
20-90% is met, and (4) ’Protected’ if > 90% is met (Frederico et al., 
2018; Table S8).

K.G. Rey Pulido and S.J.E. Velazco                                                                                                                                                                                                        Perspectives in Ecology and Conservation 23 (2025) 110–120 

112 

https://www.protectedplanet.net
https://www.protectedplanet.net


Spatial conservation prioritization and its relationship with PA and OECMs

To identify priority areas for snake conservation, we used Zonation 
v4 (Moilanen et al., 2014), which ranks landscape cells based on their 
importance for conservation using various cell removal rules, weight-
ings, and constraints (Di Minin et al., 2014). Zonation generates a 
top-down ranking of all cells in the study area, based on complemen-
tarity and irreplaceability (Moilanen et al., 2005). We selected two cell 
removal rules, core-area Zonation (CAZ), which prioritizes cells with 
rare or highly weighted species, and Additive Benefit Function (ABF); 
which emphasizes species richness (Di Minin et al., 2014); thus, both 
rules provided complementary results. Species were weighted according 
to their degree of endemism and threat categories (Appendix S5).

We used semi-binary models (i.e., environmental suitability values 
greater than the threshold were kept continuous while lower ones were 
set to zero) to reduce the problems of inflating the spatial prioritization 
analysis with many cells with low environmental suitability (Domisch 
et al., 2019). We used habitat loss as a cost layer, calculated as the in-
verse of remaining habitat (Appendix S6). Prioritization solutions were 
categorized into four classes by selecting 5%, 10%, 20%, and 30% of the 

highest priority cells and calculated proportion of priority cells within 
PA and PA +OECMs. The selection of 30% was motivated by the 30 × 30 
target (CBD, 2021).

Results

We modeled and estimated the distribution of 261 Colombian snake 
species (48 species had lower performance and were not included in our 
analysis). SDMs performed well for all metrics (Sorensen: 0.78 ± 0.06; 
AUC: 0.86 ± 0.06; TSS: 0.68 ± 0.09). For ESMs, the best-performing 
algorithms were BRT, MaxEnt, and ANN, with a Sorensen, AUC, and 
TSS above 0.7 (Fig. S3).

We found that species richness was the highest along mountain range 
slopes in the Andean, Pacific, and Amazon regions. Snake richness 
decreased notably in the Orinoco and most Caribbean regions (Fig. 1; 
Fig. S1). Regarding the relationship between species richness and PA 
and OECMs, only 13% of the cells with the highest species richness (>50 
species) were within PA. When considering PA + OECMs, cells with the 
highest species richness increased slightly to 31% (Fig. 2).

On average, snakes’ geographical ranges are 15% ± 0.09 

Fig. 1. Spatial pattern of PA/OECMs networks and species richness based on staked-SDM of snakes native to Colombia. The warmer colors represent sites with 
higher richness.
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represented within PA, rising to 29.69% ± 0.11 with PA + OECMs 
(Fig. S4). Gap analysis shows most species were categorized as ’Gap’ or 
’Protected’ with PA alone, but ’Partial gap’ or ’Protected’ with PA +
OECMs (Table 1, Fig. 3). Despite the OECMs increased the representa-
tion target already achieved by the PA (Table 1, Fig. 3), most species 
with distribution ranges < 125,000 km2 did not meet representation 
targets for either PA or PA + OECMs (Fig. 3. Table S9).

Landscapes with <50% remnant habitat represent 39.25% ± 0.08 of 
the study area (Fig. 4a), primarily in the northern Caribbean (except 
Guajira and Sierra Nevada de Santa Marta) and Andean regions 
(Fig. 4a). No clear pattern emerged between remnant habitat proportion 
and species richness (Fig. 4b-c); however, 30% with the highest species 
richness (50–60 and 60–70 species) overlapped with areas with < 50% 
of the remaining habitat (Fig. 4c). At the species level, on average snakes 
lost 31.16% ± 0.17 of natural cover within their ranges and 42 species 
experienced > 50% loss of natural cover within range.

The spatial prioritization analysis suggests that the priority areas for 
conservation are mainly located in the Pacific, Orinoco, Amazonia, and 
northern Caribbean regions (i.e., Guajira, Fig. 5). Regardless of the cell 
removal rule (i.e., ABF or CAZ), we found that OECMs increased the 
representation of priority areas. For example, the 5% priority rank, i.e., 
the most important cells for snake conservation, are represented by 24- 
27% within the PA for ABF and CAZ, and 33-37% within PA + OECMs 
for ABF and CAZ (Fig. S5).

Fig. 2. Proportion of cells inside and outside PA and PA + OECMs for different species richness classes.

Table 1 
Proportion of species for different categories of representation targets achieved 
(i.e., Gap analysis) by PA and PA + OECMs.

PA PA + OECMs
Not protected 3.8% Not protected 1.9%
Gap 31.4% Gap 7.66%
Partial gap 29.8% Partial gap 50.1%
Protected 35% Protected 40.4%

Fig. 3. Relationship between each species’ total area of distribution (km2) and the proportion achieved of the representation targets for Colombian snake species. 
Gap analysis with PA (a) and PA + OECMs (b). Each point represents a species, and black line represents the representation target for species distribution range size.
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Fig. 4. Spatial patterns of remaining habitat in Colombia (a) and the relationship between the number of cells in relative (b) and absolute (c) terms for different 
remaining habitat classes and snake richness classes. Darker colors in ‘a’ depict lower remaining habitat.
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Discussion

Here, we explored the relationship between snake species richness, 
priority areas for conservation, and representation targets with PA and 
OECMs for 261 Colombian species. The Andean, Pacific and Amazon 
regions host the highest snake richness. On average, 15% of species 
ranges are within the PA, but this representation doubled with OECMs. 
Gap analysis revealed that while OECMs increase the representation 
already achieved by PA, most species with a distribution range 
<125,000 km2 do not meet the representation target. Finally, on 
average, 24-27% and 33–37% of high-priority areas were within PA and 
PA + OECMs, respectively.

Diversity patterns in Colombia

Colombia is recognized as a megadiverse territory and one of the 14 
countries with the highest biodiversity worldwide (Correa, 2011). The 
Pacific and Andean regions had the highest snake diversity, which also 
stand out for their high diversity of other vertebrate groups (e.g., birds 
and amphibians) (Pinto-Erazo et al., 2020; Vélez et al., 2021). Although 
biogeographic processes explain the overall diversity of the Neotropics 
and the Andes (Turchetto-Zolet et al., 2013), snake richness patterns 
found in Colombia are understudied. We infer that snake richness in the 
Andean region may be driven by topographic and climatic heterogeneity 
that characterizes this region (Rangel, 2015, Rangel, 2010), as many 
studies have found a positive relationship between environmental het-
erogeneity and species richness (e.g., Körner, 2000; Stein et al., 2014). In 
contrast, high species richness in the Pacific region may be related to 
climatic stability (Rangel and Arellano, 2004). Pacific region has a low 
seasonality of precipitation and temperature, is characterized as one of 
the rainiest places worldwide (Rangel and Arellano, 2004) and harbors 

high species endemism (Rangel, 2015). Similar to other groups, the 
Amazon region also has considerable snake richness (Jenkins et al., 
2013; Zapata-Ríos et al., 2022). It is presumed that the environmental 
heterogeneity associated with the formation of the Andes and the fluc-
tuation of seasonal flooding in large alluvial river floodplains could have 
promoted Amazon diversity (Zapata-Ríos et al., 2022). Orinoquía and 
Caribbean regions exhibit lower snake richness, despite their high plant 
and vertebrate diversity (Jenkins et al., 2013). The lower richness to-
wards the eastern region of Colombia appears to be consistent with other 
reptile and amphibian groups (IUCN, 2022a,b; Roll et al., 2017). How-
ever, the Colombian Amazon and Orinoquía present scarce species re-
cords (Suárez et al., 2021). Such data scarcity may be due to difficult 
access and lack of road infrastructure, in addition to being strongly 
affected by more than five decades of armed conflict (Cairo et al., 2018). 
Further studies are necessary to clarify the environmental and historical 
factors influencing these diversity patterns.

PA and OECMs network

Colombia’s PA and OECMs do not align with the highest snake 
richness areas, which are mostly outside these conservation networks 
(Figs. 1, 2). Such mismatch is consistent with amphibians and reptiles in 
some Colombian regions (Calderón-Caro et al., 2022; Valencia-Zuleta 
et al., 2014). Generally, PA suffer from different spatial bias types (Baldi 
et al., 2017), leading to low PA connectivity and poor representation of 
different ecosystems (Saura et al., 2017). Typically, PA are created in 
areas with touristic value, unproductive, or remote locations (Baldi 
et al., 2017; Phillips, 2007). Particularly Colombia’s PA network started 
with the consolidation of some areas of economic interest, such as the 
Valle del Cauca, to support the sugarcane industry (Lenis, 2014). 
Although countries such as Colombia and Indonesia have described the 

Fig. 5. Priority areas for snake conservation in Colombia based on ABF (a) and CAZ (b) removal rules and their relationship with PA and OECMs.
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limitations and challenges involved in OECMs (Atehortúa Arredondo 
et al., 2023; Estradivari et al., 2022), there is currently no information 
on their possible biases or effectiveness. However, expert consensus shed 
light on the opportunities and challenges of implementing OECMs 
(Alves-Pinto et al., 2021; Maini et al., 2023).

It has been repeatedly found that PA alone are not effective in rep-
resenting biodiversity, as seen globally in mammals (Brum et al., 2017) 
and herpetofauna (Sánchez-Fernández and Abellán, 2015). In the case of 
Colombian snakes, it was no different. However, OECMs with PA 
doubled the representation of snake species richness. The GAP analysis 
showed that the categories "Partially GAP" and "Protected" also 
increased their representation target by 20.3% and 5.4%, respectively, 
for PA + OECMs. Therefore, OECMs play a crucial role in achieving 
conservation goals in Colombia (Rodríguez-Rodríguez et al., 2021). At 
the global level, OECMs can increase habitat connectivity and biodi-
versity representativeness (Alves-Pinto et al., 2021).

Remaining habitat and priority areas

In South America, agricultural areas have expanded rapidly over the 
last 30 years (Eva et al., 2004; Sy et al., 2015). For example, Brazil lost 
the most forest cover from 1985 to 2004, mainly due to agriculture (Sy 
et al., 2015; Zalles et al., 2021). Bolivia and Peru have increased the 
areas of anthropic uses (agriculture, livestock, and urbanization) 
(MapBiomas, 2023, 2024). Although Colombia created policies focused 
on the management and sustainable land-use (MinAmbiente, 2016, 
2013), it is not different from other countries in the region, as it has lost 
7.4% of its natural cover in the last three decades (Fundación Gaia 
Amazonas, 2023).

When exploring the patterns of the remaining habitat with the pat-
terns of species richness, we found that the areas with the highest species 
richness were consistent with the areas with the lowest remaining 
habitat, particularly in the Caribbean and parts of the Andean region 
(Fig. 4a). Frequently, regions with low topographic heterogeneity, flat, 
coastal, and low-elevation areas have the greatest urban and agricultural 
development (Gao et al., 2023; Rose et al., 2023). The Caribbean region 
is mainly composed of low and flat lands, and ports, industrial, and 
agricultural activities are developed in this region (Meisel-Roca and 
Pérez-Valbuena, 2006). The inter-Andean valleys of the Andean region 
are mainly used for agriculture (DANE, 2024). Although we found no 
clear pattern between species richness and remaining habitat, some 
studies have highlighted a positive relationship (Suazo-Ortuño et al., 
2008; Torres-Romero and Olalla-Tárraga, 2015), whereas others have 
highlighted a negative relationship between species richness and 
remaining habitat (Da Silva et al., 2018; Velazco et al., 2023, 2019). The 
presence of large regions with high species richness and high remaining 
habitat in Colombia suggests that many areas still hold potential for 
conservation efforts to protect snakes and other organism groups.

Priority areas for conservation are concentrated in the Pacific, 
Amazon, Orinoco, and northern Caribbean regions. Although the over-
lap with PA was low, it increased with the inclusion of the OECMs 
(Fig. S5). The largest number of communities and indigenous lands in 
the country are found in the northern Caribbean, Orinoco, and Amazon 
regions (DANE, 2012), in addition, the Pacific, Amazon, and Orinoco are 
regions with the highest proportion of natural cover (Fundación Gaia 
Amazonas, 2023). These regions represent an opportunity to identify 
new OECMs that, together with governmental actions will contribute to 
consolidating more ambitious conservation goals (Shiono et al., 2021). 
Biodiversity and cultural diversity are interconnected, and healthy 
ecosystems are the basis for the existence of indigenous peoples and 
local communities (Levis et al., 2024). Therefore, identifying new 
OECMs may represent an opportunity to transform conservation policies 
and practices and to recognize the contributions of indigenous peoples 
and local communities. (Jonas et al., 2017; Levis et al., 2024). OECMs 
are changing the paradigm regarding conserving biodiversity, as they 
generate more inclusive and representative systems that evidence 

multiple strategies, actors, and institutional governance arrangements at 
the local scale (Jonas et al., 2014).

Limitations

To our knowledge, few studies have evaluated the contribution of 
OECMs to Neotropics biodiversity conservation. Unfortunately, our 
work suffers from some limitations; for example, gaps persist in snake 
records in this country, coupled with the poor model performance of 
some species, leading to the exclusion of 48 species from our analysis. 
Another limitation is that our analysis not consider the capacity of some 
species to persist in disturbed areas. Here, we constructed SDMs based 
on correlative algorithms omitting biotic interactions and species 
dispersal abilities that could refine distribution estimates (Soberón et al., 
2017). Given the recent global implementation of OECMs, there are still 
no records of their long-term effectiveness (Alves-Pinto et al., 2021).

Conclusion

Colombia’s highest snake richness regions were in the Andean, Pa-
cific, and Amazon regions, which is consistent with other vertebrate 
groups. The largest areas with the least remaining snake habitats were 
the Caribbean and Andean regions. Based on species representativeness, 
Gap analysis, and overlap with priority areas, we found that OECMs 
contribute to the snakes’ protection and complement PA. Finally, we 
highlight that the priority areas for conservation were concentrated in 
the Pacific, Orinoco, Amazon, and portions of the Caribbean regions, 
which are characterized by the greatest extension of natural cover, 
which could represent opportunities to establish new OECMs.
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Galeano, M.Á., 2020. Herpetofauna from two municipalities of southwestern 
Colombia. Biota 21, 41–57. https://doi.org/10.21068/c2020.v21n01a04.
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